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The method of coadjoint orbits of infinite-dimensional Lie groups for derivation of geometric D= 2 field theory actions is 
extended to the super-Ka6-Moody and supcr-Virasoro groups in a manifcstb ( 1,0 ) supcrsymmctric form. In this way wc derive 
the explicit expressions for the actions of the supersymmetric chiral Wcss-Zumino-Novikov-Witten (WZNW) model and of the 
induced supergravity (the super-gravitational Polyakov action ). The latter action is also obtained in a different form by gauging 
the supersymmetric chiral SL( 2, ]~, ) WZNW model in the manifest supcrspaec formalism. 

!. Introduction 

The recent papers by Faddeev and coworkers [ 1,2 ] and the closely related in spirit paper by Wiegmann [ 3 ] 
revived the interest in the method of coadjoint orbits of infini te-dimensional  Lie groups for quant izat ion of 
geometric field theory actions (see also refs. [4,5 ] ). 

In particular, it was shown in ref. [2] that using the standard Kir i l lov-Kostant  symplectic structure [6] on 
tile coadjoint orbits of the Virasoro ( D =  2 conformal ) group one naturally obtains a geometric action which 
coincides with the Polyakov D = 2  gravity action [7]. i.e. the gravitational Wcss -Zumino -Nov ikov -Wi t t en  
( W Z N W )  action of the matter- induced D =  2 gravity. Also. in ref. [2] a natural interpretation tot the appear- 
ance of the SI.( 2, [~ ) symmetry in the Polyakov gravitational action was given by showing that the latter action 
may be obtained as a gauge-fixed field theory action from the ordinary SL(2, ~)  WZNW model by gauging the 
lower-triangular subgroup B-  of SL(2, P).  This work was further extended in ref. [5] to the case of SL(n, .~) 
WZNW models and tbr n >/3 a relation was found with the t!'4 algebras of Zamolodchikov [ 8 ] ~ 

in a closely related development a very interesting reformulation of the usual method of coadjoint orbits was 
proposed by Wiegmann [ 3 ] by combining it with the method of generalized coherent states (see e.g. ref. [ 10 ] ). 
in particular, by taking semidirect products of the current algebra based on the Poincar6 group with the Virasoro 
group and their supersymmetric generalizations a new framework for quantization of (super)strings was provided. 

In the present letter we propose a systematic manifestly (1,0) supcrsymmetric extension of the formalism of 
Alekseev and Shatashvili [2 ]. First, we consider the symplectic structure on the coadjoint orbits of the super- 
Ka(:-Moody group and obtain the D = 2  supersymmetric chiral WZNW model in terms of (1.0) superfields. In 
component  fields the latter model reduces to a sum of the ordinary bosonic chiral WZNW model plus decoupled 
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*~ Independently, in a recent paper [9] Polyakov provided a new deep insight into the geometric origin of these SL(n. ~ ) symmetries. 
His approach does not relay on the coadjoint orbit method but rather it is inspired by the ideas behind the spin~isospin transmutation 
induced by magnetic monopolcs. 

0370-2693/90/$ 03,50 (¢3 Elsevier Science Publishers B.V, ( North-Holland ) 307 



Volume 234, number 3 PHYSICS LETTERS B 11 Janua~  1990 

tree chiral fermions in the adjoint representation of  the underlying finite-dimensional group (an analogous 
decoupling occurs in the non-chiral ( 1.1 ) supersymmetr ic  W Z N W  model [ 11 ] ). Next, by gauging the super- 
symmetr ic  chiral W Z N W  model for G = S L ( 2 ,  P)  with respect to the Borel subgroup B-  of  lower-triangular 
2 × 2 matrices, we derive within a manifest superspace formalism a nonlinear superfield action whose purely 
bosonic limit exactly coincides with the gravitational Polyakov action ,-z. In the final section we find another  
extremely simple form of  the supergravity Polyakov action by a systematic application of  the coadjoint orbit 
method to the super-Virasoro (superconformal)  group in a manifest superspace formalism. 

2. Action on the coadjoint orbits of  the super-Ka/:-Moody group 

Let G be a finite-dimensional semi-simple Lie group and A its Lie algcbra spanned by the generators { 7~,i. 
The elements of  the super-KaY'-Moody algebra .~] with a central extension are pairs (U(x, 0). m) where the 
superfield U(x. O) = U"(x, 0)7~, takes values in the underlying finite-dimensional algebra A and the parameter  
.~.eS ~ ~3. The number  m denotes the component  along the central extension. The elements of  the dual space .¢/* 
are similarly pairs ( / ' ( x ,  0). - k  ) with V(.v, 0) = l'"(x. 0) 7",, and k a number.  The pairing between .¢/* and .¢/is 
defined as: 

( ( I ". - k  ). ( U. m )  ) = f d.\ dO t r( I ' (x.  0)/...'(.~:. 0) ) - k m .  ( 1 ) 

The component-f ield expansion of U(x. 0) and V(.v. 0) is 

( ' (x .  0 )=Uo( .V)+0u~(x)  , I ' (x ,O)=v,(x)+Ovc,(x) ,  (2)  

where uo(x), v~(.,c) arc bosonic, and u~ (.v). t'~ (.v) are fermionic fields. The commuta to r  between two elements 
of .~/ is  given by 

[ ( l',. m, ), ( L:2,m2) ] = (  [ L..',, l.'2]. - ~ifz f d.,-dOtr[ l_.',(.,~. O)DU2(.v, O) ] ) , (3) 

where 

0 + i 0  "--- 0 (4)  
I) = ~0 O.x 

is the usual super-covariant  derivative and 

[ t ,  (x. 0). U~(.v. 0)]  = [t:y 7~,. t"~'/,,] = (I~,,~."~ L'~) 7: (5) 

is the ordinary commuta to r  in the finite-dimensional algebra A. The adjoint and the coadjoint actions of  the 
super-Ka6-Moody group are given, respectively, as 

( 'f ) A d ( G ) ( U . m ) =  G(x,O)U(x .O)G-~(x .O) ,m - ~ d+rdOtr[['(x.O)G-~(x,O)DG(.v.O)] (6) 

( k ) 
A d * ( G ) ( V - k ) =  G( .v ,O)V(x ,O)G-~(x .O) - i~  D(i(.v,O)G ~(x, 0 ) , - k  7) 

~2 In a recent paper [ 12 ], Bershadsky and Ooguri derived a supersymmetric generalization of the gravitational Polyakov action within 
the component-field formalism by gauging the OSp(1,2) WZNW model. Their result has a different form from ours, therefore, their 
action must be related to the present ones (eqs. ( 27 ) and (40))  by (nonlinear) field transformations. 

,s3 Throughout this letter we shall follow the notations of ref. [21. For a rigorous mathematical treatment of ordinary Ka(:-Moody 

( loop- ) groups, see ref. [ 13 ]. 
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where (%:(.v, 0) is a superficld taking values in the finite-dimensional semi-simple group G corresponding to the 
algebra A. In component  fields: 

(; (.\', O) = exp [ 0~(,v ) ]g(.v) = [ 1 + 0~,(.v ) ]g( .v) ,  ( 8 ) 

where the fermionic field V/(x) takes values in A. 
Now, let us briefly recall the general construction of  actions of  dynamical  systems on coadjoint orbits o f a  Lic- 

group G [ 1-3 ]. On each coadjoint orbit ~"x of G there exists a canonical symplectic two-form (i.e. closed and 
nondcgencrate ) [ 6 ] which is given by 

~ ,  = ~<.v. [)'. Y]>. (9)  

where X (an element of  the dual A*) is a generic point on this orbit and Y is a one-form taking values in A, the 
Lie-algebra o f G .  Y is specified as solution to the tbllowing basic equation: 

d X = a d * ( Y )  X.  (10) 

In (10) ad*(Y)  denolcs the infinitesimal adjoint action of  A on A*: 

(ad*(Y)  .¥, Z> = -  (X,  [ Y, Z] > ( l l )  

for any Z~ A. 
The symplectic form -Qx is closed, hence (locally) exact: 

- Q v = d a .  (12) 

Thcrctbrc,  thc simplest action, dcscribing the dynamical  system defined by _c2x and having the orbit C'x as its 
phase space, takes the form: 

S = f a ,  (13) 

where the integral is over  a closed curve on the orbit 6'x. 
Thus, finding the geometric action (13)  amounts  to the problem of  solving cq. (10) for the A-valued one- 

form Y. This is achieved by parametr iz ing the elements X of" the orbit ~'xo through the group variables g~ G as 

. ¥ - X ( g )  = A d * ( g )  ,¥o, (14) 

where Xo is a fixed generic point of th is  orbit. With this parametr izat ion eq. (10) takes now the tollowing useful 
form: 

d (A d*(g )  X(,) = a d * ( Y )  (Ad*(g)  X(,) . ( 15 ) 

Returning to the supcr-Ka~:-Moody case. let us nov,' denote 

) - (  )/(.v. 0 ) . - m y ) ,  X o - ( l . ( . v ,  0 ) , - k )  (161 

and substitute the explicit expressions ( 3 ). ( 7 ) into eq. ( 15 ). One gets ( suppressing the dependence on (x, 0) ) 

)([ , ] ) d(Cil 'o¢i ' - i  k~D(iG-',-k = )t, GI"oG-t-i-25DC, C'-' - i  0 . (17) 

The solution to ( 1 7) is straightforwardly obtained: 

:~/(.v, 0) =d(;( .v ,  O)G-'(.v. 0) , m ) . = 0  (18) 

and it is the natural supersymmetr ic  generalization of the purely bosonic one-form in ref. [2 ]. 
Now, using ( 14 ), ( 7 ) and ( 18 ), the rcsult for the symplectic form .c2 ( 9 ) reads 
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.Q=d d.v d0 lr - I ' o ( G - ' d G )  + i  ( G - ' d G ) ( ( I - ' D G ) - i ~ d - ' ( G - ' D G G - ~ d G ^ G - J d ( / )  . (19) 

Hence, the corresponding action (13) takes the form 

14~,,,~,,,: d / d x d 0 t r  - I ~ ( G - ~ 0 , G ) + i ~ ( G - ~ 0 , G ) ( G - - J D G )  

I , k f f  4-n ds d t d x d O t r ' . ( G - ~ D C . [ G - ~ O , G , G - ~ G ] ' ,  . (20) 
(} 

Here t denotes the parametcr  of  the one-dimensional curve of  integration in ( 13 ), G -  G( t, x, 0) is a ( 1,0 ) D :  2 
group-valued supcrfield, and the second term on the RHS of  (20) is the supersymmetric analogue of  the well- 
known multivalued W Z N W  functional where 

G ( s = O , t , x . O ) = l  , G ( s = l , t , x , O ) = G ( t , x . O )  . 

In component  fields ( 8 ) the action (20) looks as (for the particular case of  V0 = O) 

r|~, . . . .  ' c h i r a l  j • = 14 ,,.~n~..[g] - i dtdxtr(~//O,~'),  (21) 

where 
I 

. . . . .  , g ~ - - -  ~ d t d x t r ( g - l ~ t g g - ~ g ) +  ds d td .v t r (g - IO, .g[g- I~ ,g ,g -~O,g] )  (22) 
o 

is the chiral bosonic W Z N W  action [ 14] (after the natural identification t - x  +. x - x -  of t ,  x and D = 2  light- 
cone coordinates).  A similar result (decoupling of  the supcrparlners of  the group-valued field g(t,  x) ) was 
previously obtained in rcf. [11 ] for thc usual (non-chiral) ( 1, I ) supersymmctric W Z N W  model. 

3. Gauging of the SL(2, ~) supersymmetric chiral WZNW model 

Following ref. [2] we now gauge the supersymmctric chiral W Z N W  model (20) (with Vo=0) for the group 
SL(2, P)  with respect to the B- ,  the Borcl subgroup of  lower-triangular 2 × 2  matrices. This is achieved by 
imposing a gauge-symmetry constraint through a superfield Lagrange multiplier. / /(  t, x, 0) in the action (20).  

Hg,u~.d = I4"~'~.~.[ (';] + J d t d x  d 0  t r ( . / / ( 0 x G ( ~  " - I  --cY + )) . (23) 

where 

._ ( . ,0  00) ° 
0) ' 

Let us note that M(x, 0) is a fcrmionic supcrfield taking valucs in the algebra sl (2. ~) .  Analogously to the purely 
bosonic case [ 2 ], the action ( 23 ) possesses a B-supoJieldgaugc symmetry: 

G(t. x. O)--,H(t, x, O)G(I, x, O) , 

• / / ( t ,x ,O)  , I I ( . ) . / / ( . ) f 1 - ~ ( . ) +  k o t l l ( t , x , O ) l l _ ~ ( t , x , O ) ,  (24) 
A T [  
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( I (I) (24con t ' d )  f l ( t , x . O ) -  h ( t , x . O )  

.Also, as in the purely bosonic case, there is an additional infinite-dimensional global ~4 symmct~ '  

(i(t ,  x, O) - .G( t ,  ¥, O ) Q ( t ) ,  (25) 

where Q(t )  is a (x, 0)- independent  clement o f S k ( 2 ,  ~) .  
The S1_(2. [P) group-valued (1,0) superficld G(t,  x, O) may bc paramctr izcd (in the connected component  of  

the unit element ) as 

0)( )('0 ) I A ( t. x, O) 0 ¢ ( t ,  x, O) 
( ; ( t , . v .O)= f2 ( t , x ,O)  0 A- -~( t , x ,O)  1 (26) 

where £2, A, ¢ are ordinary bosonic (1,0)  supcrficlds. 
Imposing as in rcf. [ 2 ] a gauge fixing condition 

,o( l ) 
~ ( t , x , O ) = ~  , \  ~( t ,  ~ x. Oi 

for the B --gauge symmetry  ( 24 ) which is covariant  under the global symmetry  ( 25 ), and inserting the param- 
ctrization ( 26 ) into (23)  ( upon el imination of  the Lagrange mult ipl ier . / / (  t, x, 0), one obtains 

II'~,,~g,.d=-i~- n d t d x d  ~ y , - L 3 ~ - - 8 - - . ~ , - 5 ~ + 2  .¢'  3 y ,2  - (27) 

Here and below primes indicate differentiation with respect to x. 
Inscrting into ( 27 ) the component-f ield expansion .Y = ko ( t. x ) + Ok~ ( t, x ) we get 

lt'm'uged= ]" f ~1'['° ( F~;' _ 9  ]~.~;2 ) 8n dtd.v I ' T  k, k'~ - F'o'- + ( t e r m s c o n t a i n i n g F , ) .  (28) 

The first term on the RHS of  ( 28 ) is immediately recognized as the gravitational Po lyakov-WZNW action [ 7 ] 
(mat ter- induced D = 2  gravity)  modulo a nonlinear field redefinition [2].  Therefore. the action (27)  provides 
the explicit manifest ( 1,0 ) superspace form of  the induced D =  2 supergravity [ 15, 16 ]. 

4. Action on the coadjoint orbits of the super-Virasoro group 

Now we shall dcrive an alternative form of  the D =  2 induced supergravity action (27) generalizing, as in 
section 2, the method of  the coadjoint orbits of  the usual Virasoro (conformal)  group [2 ] to the super-Virasoro 
c a s e  ~5 

First, let us recall [ 18] that the action of  the super-Virasoro group (i.e., the finite superconformal transfor- 
mat ions)  is given by the graded pair of  supcrfields ,~'(.v, 0), O(.x, O) (with xeS  ~ ): 

z = ( . r ,  0) ,A"=A~(x, 0 ) = ~ o ( x ) + 0 , ~ t ( x ) .  O = O ( x . O ) = O , ( x ) + 0 t ~ o ( X ) ,  (29) 

subject to the constraint 

D,~ ' -  i tOl)t0 = 0 ,  ( 30 ) 

,4 This is a global symmetD' in a sense that its action does not trivializc itselfon the boundaD of D= 2 space-lime. 
,5 For a comprehensive description of orbits of the ordinary (bosonic) Virasoro group, see ref. [ 17 ] and references therein. 
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where D denotes the super-covariant derivative given in (4). 
Henceforth we shall use the shorthand notation 2 =  (A "~, O). Eq. (30) implies the tollowing relations ['or the 

component-fields: 

( Oo(,V)=()~) '/2 l - i  .~.~( ) ,  ()~8)~-?~, (31) 

where the prime indicates as usually differentiation with respect to x. 
The infinitesimal superconformal transformations form the infinite-dimensional graded Lie algebra with cen- 

tral extension - the super-Virasoro algebra ~' Its elements are pairs (g(x, 0), n), where g(x, 0) is a shorthand 
notation for the vector field ,~'(x, 0)O,-  ~ iDg(x, 0) D on the super-circle, paramelrized by (x, 0) and the number 
n is the component along the central extension. The commutator of two elements of Y i s  given by 

( ' f  ) [(,~,,.n,), (gz, n2)]= g~g' , -g]gz-~iDg~Dg2,  - ~ d.vdO(Dg]'g2-g~Dg~) . (32) 

The elements ofthc dual space ~ * arc pairs (B(x, 0). c) with B(x, 0) being a fermionic superfield ofconformal 
dimension 3 and c is a number. The dual is defined with respect to the bilincar form 

< (B, c), (g, n) > = j dxd0  B(x, O)g(x, O) +on.  (33) 

The adjoint and the coadjoint actions of the super-Virasoro group arc given, respectively, as 

( l  ) 
A d ( Z ) ( g , n ) =  - ( ~ g ( X ( x , O ) , O ( x , O ) ) , n +  d.rdOX(z ' ,2-~)g(x,O) , (34) 

C 
a d * ( 2 )  (B. c) = ( (D0)3B(~(.r,  0), O(x, 0) ) + 3/~ S(=; 2) ,  c ) .  (35) 

In (34) and ( 35 ) S(z; 2)  is the super-schwarzian derivative [ 18 ] 

0"  ( D O ' ) 0 '  
S(z, 2 ) - S ( ( x , O ) : ( A  ~ , O ) ) = - D - ~ + 2  (D6~)~ (36) 

and Z-~ in (34) indicates the inverse finite conformal transformation. 
Now, we have to solve eq. ( 15 ) for the ~' -valued one-form Y -  ( :~/(x, 0), nr).  In the present case the generic 

point on the coadjoint orbit Xo is given by 

Xo =- ( B o ( x ,  0 ) ,  c )  . ( 37 ) 

Plugging in (15) the expressions (32 ) - (37 )  one gets nv=0 plus a consistent overdetermined system of four 
equations for :~/(x. 0) (each term in front of Bo(Z), O,Bo(7.). DBo(~') and in front ofc/3zr should indepen- 
dently vanish ). We easily find the following simple solution: 

d)~+iOd~ (38) 
:u(.\-. O)= (Dtg)-" 

which yields Ibr the symplectic form ,Q (9): 

( c 0, o )] 
~2=d dxdO -Bo(2)DO(d,fg+iOd~))-t- ~ r ( D O ) 2 d O  . (39) 

To get the result ( 39 ) we performed appropriate partial integrations and used the constraint ( 30 ). 
Thus, the final tbrm of the geometric action on the supcr-Virasoro coadjoint orbits (the supergravity Polyakov 

action ) W,~ acquires the form 
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l'l'sp= dtd.\dO -Bo(,V, ~)D(~)(0 ,~+iO0,6})  + 37r (I16}) 2 ' 

For the par t icular  case of  taking the generic point  on the orbit  Bo(~, O) = 0  and inserting into (40)  the compo-  

nent-field expansions  ( 29 ). ( 31 ) of  .~(t, x, O) and 69(t, .,:. O) we get 

l l ~ , , = _ i ~  ~ d t d _ \ - ~  \X~, _ ~ { ? j + ( t e r m s c o n t a i n i n g ) ~ , ) .  (411 

Thus. the purely bosonic l imit  of  the supcr-Virasoro geometric  action (the first term on the RHS of  ( 4 1 ) )  
exactly coincides with the usual bosonic gravi tat ional  Polyakov action, as it was thc case for the gauged SL(2,  
'~ ) supcrsymmctr ic  chiral W Z N W  model  (27) ,  (28) .  Hcnce, thc super-Virasoro geometric  action (40)  (for 
Bo( ~t ~, t ~ ) = 0 )  on the coadjoint  supcr-Virasoro orbits  is precisely an explicit  manifest  superspace form of  the 

mat ter - induced D =  2 supergravity action. 
Let us note that the action (40)  describes the same physical theory as the action (27) ,  although their  func- 

tional forms are quite diffcrcnt.  Indeed, (40)  is writ ten in terms of  a fermionic (1,0)  superfield tg(t, x, 0), 
whereas ( 27 ) is given in tcrms o f a  bosonic ( 1,0 ) supcrfield -¢( t ,  x, 0). Presumably.  thcrc should exist a (highly 
nonl inear)  superfield t ransformat ion bringing the form of  the action (40)  into the form (27) .  

To conc lude ,  let us point  out that. even before one a t tempts  to quantizc the above geometric  actions, a lot of  
open quest ions still remain  to bc investigated. In part icular ,  for the supcr-Virasoro group the explicit  expressions 
of  Bo(21,  which describc generic points  on the coadjoint  orbits,  are still lacking for most classes of  orbits  [ 19]. 
(This  si tuat ion is much the same as for the usual Virasoro group [ 17,2 ] ). On the other  hand, the knowledge of  
nontrivial  Bo(2 )  would yield supcrspace geomctr ic  act ions with addi t ional  symmetr ies  related to the s tat ionary 
subgroups of  Bo(2) .  ALso, the general izat ion of  the above manifest  supcrspace formalism for arbi t rary (p, q) 
D =  2 supersymmctry  will not be straightfor~'ard (and,  presumably,  will need introduct ion of  auxil iary variables 

[20] ). 
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